Learning Global Term Weights for Content-based Recommender Systems
نویسندگان
چکیده
Recommender systems typically leverage two types of signals to effectively recommend items to users: user activities and content matching between user and item profiles, and recommendation models in literature are usually categorized into collaborative filtering models, content-based models and hybrid models. In practice, when rich profiles about users and items are available, and user activities are sparse (cold-start), effective content matching signals become much more important in the relevance of the recommendation. The de-facto method to measure similarity between two pieces of text is computing the cosine similarity of the two bags of words, and each word is weighted by TF (term frequency within the document) × IDF (inverted document frequency of the word within the corpus). In general sense, TF can represent any local weighting scheme of the word within each document, and IDF can represent any global weighting scheme of the word across the corpus. In this paper, we focus on the latter, i.e., optimizing the global term weights, for a particular recommendation domain by leveraging supervised approaches. The intuition is that some frequent words (lower IDF, e.g. “database”) can be essential and predictive for relevant recommendation, while some rare words (higher IDF, e.g. the name of a small company) could have less predictive power. Given plenty of observed activities between users and items as training data, we should be able to learn better domain-specific global term weights, which can further improve the relevance of recommendation. We propose a unified method that can simultaneously learn the weights of multiple content matching signals, as well as global term weights for specific recommendation tasks. Our method is efficient to handle large-scale training data ∗This work was conducted during an internship at LinkedIn. Copyright is held by the International World Wide Web Conference Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the author’s site if the Material is used in electronic media. WWW 2016, April 11–15, 2016, Montréal, Québec, Canada. ACM 978-1-4503-4143-1/16/04. http://dx.doi.org/10.1145/2872427.2883069 . generated by production recommender systems. And experiments on LinkedIn job recommendation data justify the effectiveness of our approach.
منابع مشابه
A New WordNet Enriched Content-Collaborative Recommender System
The recommender systems are models that are to predict the potential interests of users among a number of items. These systems are widespread and they have many applications in real-world. These systems are generally based on one of two structural types: collaborative filtering and content filtering. There are some systems which are based on both of them. These systems are named hybrid recommen...
متن کاملContent-Based Top-N Recommendation Using Heterogeneous Relations
Top-N recommender systems have been extensively studied. However, the sparsity of user-item activities has not been well resolved. While many hybrid systems were proposed to address the cold-start problem, the profile information has not been sufficiently leveraged. Furthermore, the heterogeneity of profiles between users and items intensifies the challenge. In this paper, we propose a content-...
متن کاملA Grouping Hotel Recommender System Based on Deep Learning and Sentiment Analysis
Recommender systems are important tools for users to identify their preferred items and for businesses to improve their products and services. In recent years, the use of online services for selection and reservation of hotels have witnessed a booming growth. Customer’ reviews have replaced the word of mouth marketing, but searching hotels based on user priorities is more time-consuming. This s...
متن کاملHybrid Recommender System Based on Variance Item Rating
K-nearest neighbors (KNN) based recommender systems (KRS) are among the most successful recent available recommender systems. These methods involve in predicting the rating of an item based on the mean of ratings given to similar items, with the similarity defined by considering the mean rating given to each item as its feature. This paper presents a KRS developed by combining the following app...
متن کاملContext-Aware Recommender Systems: A Review of the Structure Research
Recommender systems are a branch of retrieval systems and information matching, which through identifying the interests and requires of the user, help the users achieve the desired information or service through a massive selection of choices. In recent years, the recommender systems apply describing information in the terms of the user, such as location, time, and task, in order to produce re...
متن کامل